Data and Image Models

Maneesh Agrawala

CS 448B: Visualization Fall 2021

Topics

Properties of data Properties of the image Mapping data to images

Nominal, ordinal and quantitative

On the theory of scales of measurements S. S. Stevens, 1946 Operations: =, ≠, <, >, -, ÷

N - Nominal (labels) Fruits: Apples, oranges, ... Operations: =, ≠

O - Ordered Quality of meat: Grade A, AA, AAA Operations: =, ≠, <, >

Q - Interval (location of zero arbitrary)

Dates: Jan, 19, 2016; Loc.: (LAT 33.98, LON -118.45) Like a geometric point. Cannot compare directly Only differences (i.e. intervals) may be compared Operations: =, ‡, <, >, -

Q - Ratio (location of zero fixed) Physical measurement: Length, Mass, ... Counts and amounts Like a geometric vector, origin is meaningful

21

From data model to N,O,Q Data model 32.5, 54.0, -17.3, ... Boating point numbers Conceptual model Temperature (°C) N,O,Q Burned vs. Not burned (N) Hot, warm, cold (O) Continuous range of values (Q-Int)

Dimensions and measures

Dimensions: (~ independent variables) Often discrete variables describing data (N, O) Categories, dates, binned values

Measures: (~ dependent variables) Data values that can be aggregated (Q) Numbers to be analyzed Aggregate as sum, count, average, std. deviation

Distinction is **not** strict. The same variable may be treated either way depending on the task.

23

Example: U.S. Census Data

People Count: Year: Age: Sex: Marital Status: # of people in group
1850 - 2000 (every decade)
0 - 90+
Male, Female
Single, Married, Divorced, ...

Census: N, O, Q?

			Α	В	С	D	E
	$\sim \sim \sim$	1	year	age	marst	sex	people
Census: N.		2	1850	0	0	1	1483789
		3	1850	0	0	2	1450376
		4	1850	5	0	1	1411067
		5	1850	5	0		1359668
People Count:	Q-Kafio	7	1850	10	0	2	1216114
Varia	O Interval (O)	8	1850	15	0	1	1077133
Tear:	Q-Inferval (O)	9	1850	15	0	2	1110619
		10	1850	20	0	1	1017281
Age:	Q-Ratio (O)	11	1850	20	0	2	1003841
-		12	1850	25	0	1	862547
Sex:	Ν	14	1850	20	0	1	730638
		15	1850	30	0	2	639636
Marital Status:	N	16	1850	35	0	1	588487
	- N	17	1850	35	0	2	505012
		18	1850	40	0	1	475911
		19	1850	40	0	2	428185
2210 data noin		20	1850	45	0	1	384211
2346 data poin	TS	21	1850	45	0	2	341254
		22	1850	50	0	1	321343
		23	1850	55	0	1	194080
		25	1850	55	0	2	187208
		26	1850	60	0	1	174976
		27	1850	60	0	2	162236
		28	1850	65	0	1	106827
		29	1850	65	0	2	105534
		30	1850	70	0	1	73677
		31	1850	70	0	2	71762
		32	1850	/5	0	1	40834
		30	1850	/5	0	2	40229
		35	1850	80	0	2	23449
		36	1850	85	0	1	8186

			Α	В	С	D	E
		1	year	age	marst	sex	people
Census: Dim	or Meas	2	1850	0	0	1	1483789
		3	1850	0	0	2	1450376
-		4	1850	5	0	1	1411067
		5	1850	5	0	2	1359668
People Count:	Measure	6	1850	10	0	1	1260099
•		/	1850	10	0	2	1216114
Year:	Dimension	9	1850	15	0	2	1110619
	Billionoron	10	1850	20	0	1	1017281
Aae·	Dependel	11	1850	20	0	2	1003841
Aye.	Depends:	12	1850	25	0	1	862547
F		13	1850	25	0	2	799482
Jex:	Dimension	14	1850	30	0	1	730638
	 .	15	1850	30	0	2	639636
Marital Status:	Dimension	16	1850	35	0	1	588487 505012
		17	1850	35	0	2	505012
		18	1850	40	0	1	475911
		19	1850	40	0	2	428185
2348 data point	te	20	1950	40	0	1	304211
	19	22	1850	50	0	1	321343
		23	1850	50	0	2	286580
		24	1850	55	0	1	194080
		25	1850	55	0	2	187208
		26	1850	60	0	1	174976
		27	1850	60	0	2	162236
		28	1850	65	0	1	106827
		29	1850	65	0	2	105534
		30	1850	70	0	1	73677
		31	1850	70	0	2	71762
		32	1850	75	0	1	40834
		24	1850	/5	0	2	40229
		35	1850	80	0	2	23449
		36	1850	85	0	1	8186
		50	1850	00	U	-	0100

Relational data model

Represent data as a table (relation) Each row (tuple) represents a single record Each record is a fixed-length tuple Each column (attribute) represents a single variable Each attribute has a *name* and a *data type* A table's schema is the set of attribute names and data types A database is a collection of tables (relations) Attributes Primary Med. Income (ID) N am e Population 45,000 100 101 Valley East Val Therese 3,200 4,125 2,109 4,500 3,459 3,443 2,986 1,998 Tuple 48,000 39,000 43,500 42,000 55,000 52,500 39,000 101 102 103 Capreol Eastwood Attribute valu C ardinality Lynnwood Kingsway Prince Anne Whitefish 104 105 105 106 107

Relational algebra [Codd 1970] / SQL

Operations on data tables: table(s) in, table out

- Projection (SELECT) select a set of columns
- Selection (WHERE) filter rows
- Sorting (ORDER BY) order rows
- Aggregation (GROUP BY, SUM, MIN, ...) partition rows into groups and summarize
- Combination (JOIN, UNION, ...) integrate data from multiple tables

34

Relational algebra [Codd 1970] / SQL

Projection (SELECT) - select a set of columns

select day, stock

day	stock	price	day	stock
10/3	AMZN	957.10	10/3	AMZN
10/3	MSFT	74.26	10/3	MSFT
10/4	AMZN	965.45	10/4	AMZN
10/4	MSFT	74.69	10/4	MSFT

Relational algebra [Codd 1970] / SQL Sorting (ORDER BY) - order records select * order by stock day stock price day stock price 10/3 10/3 AMZN 957.10 AMZN 957.10 10/4 965.45 10/3 MSFT 74.26 AMZN 10/4 AMZN 965.45 10/3 **MSFT** 74.26 10/4 **MSFT** 74.69 10/4 **MSFT** 74.69

Roll-Up and Drill-Down

Want to examine population by year and age? **Roll-up** the data (i.e. aggregate) along marst.

Dimensions Measure SELECT year, age, sum(people) FROM census GROUP BY year, age Dimensions

Origin	al					
YEAR)	AGE	MA	RST	SEX	PEOPLE
1850		0	0		1	1,483,789
1850		5	0		1	1,411,067
1860		0	0		1	2,120,846
1860		5	0		1	1,804,467
Pivote	d or Cı	ross-To	abulati	on		
AGE	MARS	T S	SEX	1850		1860
0	0	1		1,483,7	89	2,120,846
5	0	1		1,411,06	67	1,804,467
•••						
			• • •			<u> </u>
Whic	ch tori	mat r	ni ght ۱	<u>ve pre</u>	fer? \	/Vhy:

Tidy Data [Wickham 2014]

How do rows, columns, and tables match up with observations, variables, and types? In "tidy" data:

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each type of observational unit forms a table

Advantage: Flexible starting point for analysis, transformation, and visualization. Our pivoted table variant was not "tidy"!

Common Data Formats

CSV: Comma-Separated Values year,age,marst,sex,people 1850,0,0,1,1483789 1850,5,0,1,1411067 ...

Office Hours

Maneesh: 2-3pm Wed, Coupa Café Y2E2 and Canvas/Zoom Dae Hyun: 10-11am Thu, CEMEX Aud and Canvas/Zoom Shana Hadi: 7-8:00pm Sun, via Canvas/Zoom

Happy to schedule other OH by appointment Outside of OH use Slack to connect with us

https://canvas.stanford.edu/courses/144332/external_tools/11232

Assignment 1: Visualization Design

Pick a guiding question, use it to title your visualization Design a static visualization for that question You are free to use any tools (including pen & paper)

Deliverables (upload via Canvas; see A1 page) PDF of your visualization with a short description including design rationale (≤ 4 paragraphs)

Due by 7am on Mon Sep 27

Coding information in position

- 1. A, B, C are distinguishable
- 2. Three pts colinear: B between A and C
- 3. BC is twice as long as AB
- ... Encode quantitative variables

"Resemblance, order and proportional are the three signfields in graphics." - Bertin

Automated design

Jock Mackinlay's APT 86

98

Combinatorics of encodings

Challenge:

Assume 8 visual encodings and n data fields Pick the best encoding from the exponential number of possibilities (n+1)⁸

Principles

Challenge:

Assume 8 visual encodings and n data fields Pick the best encoding from the exponential number of

possibilities (n+1)⁸

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering:

Encode the most important information in the most effective way

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily *perceived* than the information in the other visualization.

Subject of perception lecture

Mackinlay's Design Algorithm

User formally specifies data model and type Input: list of data variables ordered by importance

APT searches over design space

Tests expressiveness of each visual encoding (rule-based) Generates encodings that pass test Rank by perceptual effectiveness criteria Outputs most effective visualization

107

Automatic chart construction Encode most important data using highest ranking visual variable for the data type Price Mileage Weight Repair 1. Price (Q) 22 3000 great 13,500 2. Mileage (Q) 31 1500 ok 7,200 3. Weight (Q) 12 4200 terrible 11,300 4. Repair (N) Quantitative Ordinal Nominal mark: lines Position Density Saturation Hue Texture Connectior Position Position Position Length Angle Slope Area Volume Density Saturation Hue Texture Connectic Connectic Position Hue Texture Connection Containmen Density Saturation Price \rightarrow y-pos (Q) Mileage \rightarrow x-pos (Q) Weight \rightarrow size (Q) → Length Angle Slope Area Volume Shape Length Angle Slope Area Repair \rightarrow color (N) Automating the design of graphical presentation of relational information J. Mackinlay, 1986

Limitations

Does not cover many visualization techniques

- Networks, maps, diagrams
- Also, 3D, animation, illustration, ...

Does not consider interaction Does not consider semantics or conventions Assumes single visualization as output

: B	Eile	<u>E</u> dit ⊻iew	Insert Format	<u>T</u> ools <u>D</u> ata	Window	Help		Туре	a question fo	or help 👻	- 8 ×
	A1	-	<i>f</i> ∗ ID								
	A	В	C	D	E	F	G	Н		J	
1	ID	Case	Species_No	Species	Organ	Width	Length				
2	1	1	1	I. Setosa	Petal	2	14				_
3	2	1	3	I. Verginica	Petal	24	56				
4	3	1	2	I. Versicolor	Petal	13	45				
5	4	1	1	I. Setosa	Sepal	33	50				
6	- 5	1	3	I. Verginica	Sepal	31	67				
7	6	1	2	I. Versicolor	Sepal	28	57				
8	7	2	1	I. Setosa	Petal	2	10				
9	8	2	3	I. Verginica	Petal	23	51				
10	9	2	2	I. Versicolor	Petal	16	47				
11	10	2	1	I. Setosa	Sepal	36	46				
12	11	2	3	I. Verginica	Sepal	31	69				
13	12	2	2	I. Versicolor	Sepal	33	63				
14	13	3	l <u> </u>	I. Setosa	Petal	2	16				
15	14	3	3	I. Verginica	Petal	20	52				
16	15	3	2	I. Versicolor	Petal	14	47				
17	16	3	1	I. Setosa	Sepal	31	48				
18	17	3	3	I. Verginica	Sepal	30	65				
19	18	3	2	I. Versicolor	Sepal	32	70				
20	19	4	1	I. Setosa	Petal	1	14				
21	20	4	3	I. Verginica	Petal	19	51				
22	21	4	2	I. Versicolor	Petal	12	40				
23	22	4	1	I. Setosa	Sepal	36	49				
24	23	4	3	I. Verginica	Sepal	27	58				
25	24	4	2	I. Versicolor	Sepal	26	58				
26	25	5	1	I. Setosa	Petal	2	13				
27	26	6	3	I. Verginica	Petal	17	45				
28	27	6	2	I. Versicolor	Petal	10	33				
29	28	5	i 1	I. Setosa	Sepal	32	44				
30	29	5	3	I. Verginica	Sepal	25	49				
31	30	6	2	I. Versicolor	Sepal	23	50				
32	31	. 6	1	I. Setosa	Petal	2	16				-
H 4	F F	fischer.iris	/				▲				

Sepal and petal lengths and widths for three species of iris [Fisher 1936].

		I. Setosa				I. Verginica				I. Versicolor				
	pet	tal	sep	al	petal		sepal		petal		sepal			
	length	width	length	width	length	width	length	width	length	width	length	width		
1	14	2	50	33	56	24	67	31	45	13	57	28		
2	10	2	46	36	51	23	69	31	47	16	63	33		
3	16	2	48	31	52	20	65	30	47	14	70	32		
4	14	1	49	36	51	19	58	27	40	12	58	26		
5	13	2	44	32	45	17	49	25	33	10	50	23		
6	16	2	51	38	50	19	63	25	41	10	58	27		
7	16	2	50	30	49	18	63	27	45	15	60	29		
8	19	4	51	38	56	21	64	28	33	10	49	24		
9	14	2	49	30	51	19	58	27	39	14	52	27		
10	14	2	50	36	55	18	64	31	39	12	58	27		
11	15	4	54	34	50	15	60	22	42	15	59	30		
12	14	2	55	42	57	23	69	32	44	13	63	23		
13	14	2	44	29	49	20	56	28	49	15	63	25		
14	14	1	48	30	58	18	67	25	30	11	51	25		
15	17	3	57	38	54	21	69	31	36	13	56	29		
16	15	4	51	37	61	25	72	36	44	14	66	30		
17	13	2	55	35	55	21	68	30	50	17	67	30		
18	13	2	44	30	56	22	64	28	45	15	62	22		
19	16	2	47	32	51	15	63	28	46	14	61	30		
20	12	2	50	32	59	23	68	32	39	11	56	25		
21	11	1	42	20	E4	22	62	24	45	15	61	22		

Chambers, Cleveland, Kleiner, Tukey, Graphical Methods for Data And

